已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且AnBn=7n+45/n+3,则使得a2nbn为整数的正整数n的个数是_.

问题描述:

已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且

An
Bn
7n+45
n+3
,则使得
a2n
bn
为整数的正整数n的个数是______.

An
Bn
7n+45
n+3
,可设An=kn(7n+45)⇒an=An-An-1=14kn+38k,
设Bn=kn(n-3)⇒bn=Bn-Bn-1=2kn+2k,所以a2n=28kn+38k,
a2n
bn
14n+19
n+1
=14+
5
n+1
,故n=4.
故答案为:1.