已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且AnBn=7n+45/n+3,则使得a2nbn为整数的正整数n的个数是_.
问题描述:
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且
=An Bn
,则使得7n+45 n+3
为整数的正整数n的个数是______. a2n bn
答
由
=An Bn
,可设An=kn(7n+45)⇒an=An-An-1=14kn+38k,7n+45 n+3
设Bn=kn(n-3)⇒bn=Bn-Bn-1=2kn+2k,所以a2n=28kn+38k,
=a2n bn
=14+14n+19 n+1
,故n=4.5 n+1
故答案为:1.