求微分方程(x^2-1)y'+2xy-cosx=0的通解

问题描述:

求微分方程(x^2-1)y'+2xy-cosx=0的通解

(x^2-1)y'+2xy-cosx=0
(x^2-1)dy+2xydx-cosxdx=0
d(yx^2-y-sinx)=0
yx^2-y-sinx=C
y=(sinc+C)/(x^2-1)