Iab-2I与Ib-1I互为相反数.问1/ab+[1/(a+1)(b+1)+1/(a+2)(b+2)+``+1/(a+2009)(b+2009)]的

问题描述:

Iab-2I与Ib-1I互为相反数.问1/ab+[1/(a+1)(b+1)+1/(a+2)(b+2)+``+1/(a+2009)(b+2009)]的

|ab-2|>=0,|b-1|>=0
|ab-2|=-|b-1|, |b-1|=|ab-2|=0,b=1,a=2
1/ab=1/2 1/(a+1)(b+1)=1/6
1/(a+2)(b+2)=1/12
1/(a+2009)(b+2009)=1/(2011*2010)
原式=1/2+[1/6+1/12+..+1/(2010*2011)]=1/2+[(1/2-1/3)+(1/3-1/4)+..+(1/2010-1/2011)]=1/2+1/2+1/2011=1+1/2011