dx/x平方(1-x)的不定积分是多少

问题描述:

dx/x平方(1-x)的不定积分是多少

1/[x^2(1-x)]=A/(x-1)+B/x+C/x^2
Ax^2+Bx(x-1)+C(x-1)=-1
x=0:C=1 x=1:A=-1 x=-1:A+2B-2C=-1 B=1
∫dx/[x^2(1-x)]=-∫dx/(x-1)+∫dx/x+∫dx/x^2
=-ln|x-1|+ln|x|-1/x+C
=ln|x/(x-1)|-1/x+C