在△ABC中,cosA=4/5,tanB=2,求tan2C
问题描述:
在△ABC中,cosA=4/5,tanB=2,求tan2C
答
tanA=3/4 tanB=2
由
tanA+tanB+tanC=tanAtanBtanC
得tanC=11/2
tan2C= -44/117
证明
tanA+tanB+tanC=tanAtanBtanC
因为三角形ABC为锐角
所以tanC=tan[ ∏-(A+B)]
即tanC=-(tanA+tanB)÷(1-tanA×tanB)
-tanC=(tanA+tanB)÷(1-tanA×tanB)
-tanC+tanA×tanB×tanC=tanA+tanB
移项tanA×tanB×tanC=tanA+tanB+tanC