3 的m次方=6,9的n次方=2,求3的2m-4n+1次方的值
问题描述:
3 的m次方=6,9的n次方=2,求3的2m-4n+1次方的值
答
因为3^m=6,9^n=2,
所以3^(2*m-4*n+1)=3^(2*m)/3^(4*n)*3
=(3^m)^2/(3^2)^(2*n)*3
=6^2/(9^n)^2*3
=36/2^2*3
=9*3
=27
其中^是幂的意思
答
3的2m-4n+1=3^2m÷3^4n×3=(3^m)^2÷(9^n)^2×3=6^2÷2^2×3=27
答
3^(2m-4n+1)
=3^2m÷3^4n*3
=(3^m)^2÷(3^2n)^2*3
=(3^m)^2÷(9^n)^2*3
=6^2÷2^2*3
=36÷4*3
=9*3
=27
答
3^(2m-4n+1)=(3^m)^2*(9^n)^(-2)*3=27