在Rt△ABC中,∠BAC=90°,以AB为直径⊙O交BC于点E,D为AC中点,EF⊥AB于点F.过A作AK∥DE交⊙O于K,交BC于H,交EF于G. (1)求证:DE是⊙O的切线; (2)已知EG=2GF,OG=2,求△AKB的面积.
问题描述:
在Rt△ABC中,∠BAC=90°,以AB为直径⊙O交BC于点E,D为AC中点,EF⊥AB于点F.过A作AK∥DE交⊙O于K,交BC于H,交EF于G.
(1)求证:DE是⊙O的切线;
(2)已知EG=2GF,OG=2,求△AKB的面积.
答
(1)证明:连接AE,OE,
∵AB是⊙O直径,
∴∠AEB=90°,
∴∠CEA=180°-∠AEB=180°-90°=90°,
∵点D位AC中点,
∴DE=AD,
∴∠DAE=∠DEA,
∵OE=OA,
∴∠OEA=∠OAE,
∴∠OEA+∠DEA=∠OAE+∠DAE,
∴∠OED=∠BAC=90°,
∴DE⊥OE,
∴DE是⊙O的切线.
(2)∵∠BAC=90°,EF⊥AB,
∴AD∥EF,
∵DE∥AK,
∴四边形ADEG是平行四边形,
∵AD=ED,
∴四边形ADEG是菱形,
∴AG=EG=2GF,
∴在Rt△AGF中,sin∠GAF=
=GF AG
,1 2
∴∠GAF=30°,
∵DE∥AK,OE⊥DE,
∴AK⊥OE,
∴∠AOE=90°-30°=60°,
∵OE=OA,
∴△OEA是等边三角形,
∵点G在AK上,AK⊥OE,
∴EG=OG=2,
∴AG=EG=2,
∴AF=2×cos30°=
,
3
∴OA=2AF=2
,
3
∴AB=2OA=4
,
3
∴AK=4
×cos30°=6,BK=AB•sin30°=2
3
,
3
∴S△ABK=
AK•BK=61 2
.
3