已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?

问题描述:

已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?

解;由题意得:对称轴x=3,又二次项系数为负,
∴函数y=f(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,
∵2+2x-x2=3-(x-1)2≤3,2-x-2x2=

17
8
-2(x−
1
4
)
2
17
8

由2+2x-x2-(2-x-2x2)=x(x+3)<0得:-3<x<0,
∴当f(2+2x-x2)<f(2-x-2x2)时有-3<x<0.