设(X,Y)的联合概率密度为 f(x,y)=1/π(x^2+y^2
问题描述:
设(X,Y)的联合概率密度为 f(x,y)=1/π(x^2+y^2
答
C
取不同 x 值的时候 y 的边缘分布不同,反之,取不同 y 值的时候 x 的边缘分布不同,所以它们不独立.
但是对 x 积分或者对 y 积分求得的概率密度是相同的,所以它们同分布.