设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)(1)求证:数列{an}是等比数列.(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(1/
问题描述:
设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
)(n=2,3,4…)求数列{bn}的通项公式.1 bn-1
(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1.
答
(1)∵3tsn-(2t+3)sn-1=3t∴3tsn-1-(2t+3)sn-2=3t(n>2)两式相减可得3t(sn-sn-1)-(2t+3)(sn-1-sn-2)=0整理可得3tan=(2t+3)an-1(n≥3)∴anan−1=2t+33t∵a1=1∴a2=2t+33t即a2a1=2t+33t数列{an}是...