一次函数y1=mx+2m的像与x轴交于点A,直线y2=nx-4n与x轴交于点B,y1与y2交于点C(2,p)且S△ABC=12,则m+n+p

问题描述:

一次函数y1=mx+2m的像与x轴交于点A,直线y2=nx-4n与x轴交于点B,y1与y2交于点C(2,p)且S△ABC=12,则m+n+p

令y1=0,则mx+2m=0,∴mx=-2m,∴x=-2,令y2=0,则nx-4n=0,∴nx=4n,∴x=4则AB=|-2|+|4|=6因为S△ABC=12,所以1/2×AB×h=12.即3h=12,所以h=4即P的坐标为(2,4)又∵y1交y2于C(2,4),代入y1,y2的函数式,∴4m=4,m=1-2n=4,∴n=-2...