已知{an}满足a1=3,an+1=2an+1, (1)求证:{an+1}是等比数列; (2)求这个数列的通项公式an.
问题描述:
已知{an}满足a1=3,an+1=2an+1,
(1)求证:{an+1}是等比数列;
(2)求这个数列的通项公式an.
答
(1)∵an+1=2an+1,∴an+1+1=2an+2,
即an+1+1=2(an+1),
=2
an+1+1
an+1
故可得数列{an+1}是2为公比的等比数列;
(2)又可知a1+1=3+1=4,
故an+1=4×2n-1=2n+1,
∴an=2n+1−1