如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,BC=2.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的余弦值.

问题描述:

如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=

3
,BC=2.

(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.

(1)证明:由直棱柱的性质可得,AA1⊥平面ABC∴AA1⊥AB∵在△ABC中AB=1,AC=3,BC=2,AB2+AC2=BC2∴AB⊥AC又AC∩AA1=A∴AB⊥平面ACC1A1,又∵A1C⊂平面ACC1A1∴AB⊥A1C(2)连接A1C,A1B由已知可得A1B=BC=2 ...
答案解析:(1)先证明AB⊥平面ACC1A1,即可证明AB⊥A1C;
(2)连接A1C,A1B,取A1C的中点D,连接AD,BD可得∠ADB是二面角A-A1C-B的平面角,从而可求二面角A-A1C-B的余弦值.
考试点:二面角的平面角及求法;直线与平面垂直的性质.
知识点:本题考查线面垂直的判定,考查面面角,考查学生分析解决问题的能力,属于中档题.