如图,在△ABC中,AD平分∠BAC,AD的垂直平分线交AD于E,交BC的延长线于F,求证:FD2=FB×FC.

问题描述:

如图,在△ABC中,AD平分∠BAC,AD的垂直平分线交AD于E,交BC的延长线于F,求证:FD2=FB×FC.

如图:
连接AF,∵EF垂直平分AD,
∴FA=FD.∠FAD=∠FDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD.
在△FAC和△FBA中,
∠AFC=∠BFA,
∠ACF=∠B+2∠BAD=∠FDA+∠BAD=∠FAD+∠BAD=∠BAF.
∴△ACF∽△BAF,

CF
AF
=
AF
BF

∴AF2=BF•FC.
又∵FA=FD
∴FD2=FB•FC.
答案解析:根据线段垂直平分线的性质,得到FD=FA,∠FAD=∠FDA,再根据三角形外角的性质,得到两个三角形的一对对应角相等,另一对角是这两个三角形的公共角,可以证明两个三角形相似,然后用相似三角形的性质对应线段的比相等进行证明.
考试点:相似三角形的判定与性质.
知识点:本题考查的是相似三角形的判定与性质,先根据题意判定两个三角形相似,再用相似三角形的性质定理对应边的比相等证明等式成立.