已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.

问题描述:

已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.

证明:过A、D分别做BC的垂线,垂足分别为G、H.设AG=1,那么CG=1,DH=12,BH=32,tan∠DBH=13,又∠GAF=∠DBH,∴GF=13AG=13,FH=GH-GF=12-13=16,tan∠FDH=FHDH=13∴∠DBH=∠FDH∵∠ADB=∠DBH+∠C,∠CDF=∠FDH+∠C...
答案解析:可过A、D分别做BC的垂线,设AG的长为1,得出与之相关联的线段的长度,进而利用角正切值相等得出∠DBH=∠FDH,即可得出结论.
考试点:全等三角形的判定与性质;等腰直角三角形;锐角三角函数的定义.


知识点:本题主要考查了等腰三角形的性质以及由正切值判定两个角相等,无论是证明还是计算题,都应该从不同角度思考,利用已学知识熟练求解.