如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动
问题描述:
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动,过D作∠ADE=45°,DE交AC于E ① 求证 △ABD相似于△DCE ②设BD=x AE=y 求y关于x的函数关系式,并写出自变量x的取值范围 ③ 当△ADE为等腰三角形时,求AE的长
答
①∵AB=AC ,∠BAC=90°
∴∠ABC=∠ACB=45°
∴∠ABC=∠ACB=45°=∠ADE
∵ ∠ADB=∠ACD+∠DAC
∠DEC=∠DAC+∠ADE
∴∠ADB=∠DEC
在△ABD与△DCE中
∠ADB=∠DEC,∠ABD=∠DCE
∴△ABD∽△DCE
②AB=AC=2
∴BC=2√2
∵ △ABD∽△DCE
∴AB:DC=BD:CE
∴2:(2√2 -x)=x:(2-y)
∴y=0.5x^2- √2 *x +2 (0≤x