已知向量m=(2cosX,2sinX),n=(cosX,根号3cosX),函数f(X)=amn+b-a(a,b为常数且X属于R)

问题描述:

已知向量m=(2cosX,2sinX),n=(cosX,根号3cosX),函数f(X)=amn+b-a(a,b为常数且X属于R)
1)当a=1,b=2时,求f(X)的最小值 2)是否存在非零整数a,b,使得当X属于[0,派/2]时,f(X)的值域为[2,8].若存在,求出a,b的值,若不存在说明理由.

向量m·n=2(cosx)^2+2√3sinxcosx
=1+cos2x+√3sin2x
=2(cos2x*1/2+sin2x*√3/2)+1
=2sin(2x+π/6)+1,
f(x)=2asin(2x+π/6)+a+b-a
=2asin(2x+π/6)+b
a=1,b=2时,
f(x)=2sin(2x+π/6)+2,
最小值为:-2+2=0,
当x∈[0,π/2]时,
(-1/2)2a+b=-a+b,
1*2a+b=2a+b,
f(x) 对应在-a+b和2a+b之间,
-a+b=2,
2a+b=8,
a=2,b=4.