已知二次函数f(x)=ax^2+bx+c的导数为f'(x),f'(x)>0.对任意实数x,有f(x)>=0,则f(1)/f'(0)的最小值是?为什么判别式是小于等于0
问题描述:
已知二次函数f(x)=ax^2+bx+c的导数为f'(x),f'(x)>0.对任意实数x,有f(x)>=0,则f(1)/f'(0)的最小值是?为什么判别式是小于等于0
答
已知二次函数f(x)=ax^2+bx+c的导数为f'(x),f'(x)>0.对任意实数x,有f(x)>=0,则f(1)/f'(0)的最小值是?为什么判别式是小于等于0