已知x分之1+y分之1 =2 求3x+y的最小值

问题描述:

已知x分之1+y分之1 =2 求3x+y的最小值

1/X+1/Y=2
即有1/2(1/X+1/Y)=1
3X+Y
=(3X+Y)*1/2(1/X+1/Y)
=1/2(3+3X/Y+Y/X+1)
=1/2(4+3X/Y+Y/X)
>=1/2(4+2根号(3X/Y*Y/X))
=2+根号3
即最小值是2+根号3.