设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dy\dx

问题描述:

设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dy\dx

sin(x²+y)=xy
两边对x求导得cos(x²+y)*(2x+y')=y+x*y'
所以(cos(x²+y)-x)y'=y-2xcos(x²+y)
所以y'=[y-2xcos(x²+y)]/[cos(x²+y)-x]
即dy/dx=[y-2xcos(x²+y)]/[cos(x²+y)-x]

这个题目要利用隐函数的求导法则.
则sin(x^2+y)=xy (两边同时求导,还要结合复合函数的求导法则)
cos(x^2+ y)*(2x+y′)=y+xy′
2xcos(x^2+y)-y=xy′-y′ cos(x^2+ y)
2xcos(x^2+y)-y=y′(x-cos(x^2+ y))
y′={2xcos(x^2+y)-y}/(x-cos(x^2+ y))
则dy\dx= y′={2xcos(x^2+y)-y}/(x-cos(x^2+ y))