求所确定的隐函数y= y(x)的导数dy/dx(x^2)y - lny = x

问题描述:

求所确定的隐函数y= y(x)的导数dy/dx
(x^2)y - lny = x

两遍对x求导数
2xy+(x^2)(dy/dx)-(dy/dx)/y=1
移项:(dy/dx)(x^2-1/y)=1-2xy
(dy/dx)=(1-2xy)/(x^2-1/y)

对x求导得,2xy+(x^2)(dy/dx)-(1/y)(dy/dx)=1
下面解一下就出来了

(x^2)y - lny = x
2x*y+x^2*y'-1/y*y'=1
(x^2-1/y)*y'=1-2xy
y'=(1-2xy)/(x^2-1/y)