已知a>2,求证:log(a-1)a>loga(a+1)
问题描述:
已知a>2,求证:log(a-1)a>loga(a+1)
答
证明(法一):∵log(a−1)a−loga(a+1)=
−loga(a+1)1
loga(a−1)
=
.1−(loga(a−1))•(loga(a+1))
loga(a−1)
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)•loga(a+1)≤[
]2
loga(a−1)+loga(a+1) 2
=
<[loga(a2−1)]2 4
=1[logaa2]2 4
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
=
log(a−1)a
loga(a+1)
=
1
loga(a−1)
loga(a−1)
1 (loga(a−1))•(loga(a+1))
由法1可知:loga(a-1)•loga(a+1)≤[
]2
loga(a−1)+loga(a+1) 2
=
<[loga(a2−1)]2 4
=1[logaa2]2 4
∴
>1.1
loga(a−1)•loga(a+1)
故命题得证