在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F. (1)求证:BD=BF; (2)若BC=6,AD=4,求⊙O的面积.

问题描述:

在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.

(1)求证:BD=BF;
(2)若BC=6,AD=4,求⊙O的面积.

(1)证明:如图,连接OE∵AC切⊙O于E,∴OE⊥AC,又∠ACB=90°,即BC⊥AC,∴OE∥BC,∴∠OED=∠F,又OD=OE,∴∠ODE=∠OED,∴∠ODE=∠F,∴BD=BF;(2)设⊙O半径为r,由OE∥BC得△AOE∽△ABC,∴AOAB=OEBC,即r...