设y=∫(0到x)(sint)^(1/2)dt(0

问题描述:

设y=∫(0到x)(sint)^(1/2)dt(0

数学人气:616 ℃时间:2020-03-25 05:36:30
优质解答
y'=(sinx)^(1/2)
ds=[1+sinx]^(1/2)dx
s=∫(0,π)[1+sinx]^(1/2)dx=∫(0,π)[sin(x/2)+cos(x/2)]dx=2[sin(x/2)-cos(x/2)](0,π)=4
我来回答
类似推荐

y'=(sinx)^(1/2)
ds=[1+sinx]^(1/2)dx
s=∫(0,π)[1+sinx]^(1/2)dx=∫(0,π)[sin(x/2)+cos(x/2)]dx=2[sin(x/2)-cos(x/2)](0,π)=4