已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和, (1)用an表示an+1; (2)证明数列{an+1}是等比数列; (3)求an和Sn.
问题描述:
已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和,
(1)用an表示an+1;
(2)证明数列{an+1}是等比数列;
(3)求an和Sn.
答
(1)由an+1=Sn+(n+1)①
得出n≥2时
an=Sn-1+n ②
①-②得出
an+1-an=an+1
整理an+1=2an+1.(n≥2)
由在①中令n=1得出a2=a1+2=3,满足a2=2a1+1
所以an+1=2an+1.(n≥1)
(2)在an+1=2an+1两边同时加上1得出
an+1+1=2(an+1)
根据等比数列的定义,得出数列{an+1}是以2为公比的等比数列
(3)由(2)数列{an+1} 的通项公式为an+1=2•2 n-1=2n
所以an=2n-1,
Sn=(21-1)+(22-1)+…(2n-1)
=
-n2(1−2n) 1−2
=2 n+1-2-n.