定义在R+上的函数f(x),对于任意的m,n∈R+,都有f(mn)=f(m)+f(n),x>1时,f(x)

问题描述:

定义在R+上的函数f(x),对于任意的m,n∈R+,都有f(mn)=f(m)+f(n),x>1时,f(x)

1.
当m=1时,f(n)=f(1)+f(n)
所以f(1)=0;
2.
当n=m=x时,f(x^2)=2f(x),
当x>1时,x^2>x,f(x^2)<f(x)<0,所以当x>1时,f(x)是减函数.
当0<x≤1时,0<x^2<x≤1,f(x^2)=2f(x),
若f(x)≥0,则f(x^2)≥f(x)≥f(1)=0,f(x)在0<x≤1上是减函数;
若f(x)<0,则0=f(1)<f(x^2)<f(x),无法确定增减;