设双曲线以椭圆x^2/25+y^2/16=1长轴的两个端点为焦点,其准线过椭圆的焦点则双曲线的渐近线的斜率为多少?
问题描述:
设双曲线以椭圆x^2/25+y^2/16=1长轴的两个端点为焦点,其准线过椭圆的焦点则双曲线的渐近线的斜率为多少?
答
由题可知长轴的两点为(5,0)(-5,0),而椭圆的焦点为(3,0)(-3,0),所以双曲线c=5,a^2/c=3,所以a^2=15,b^2=10,双曲线方程为x^2/15-y^2/10=1,渐近线为y=(根号6)x/3,y=-(根号6)x/3.