定语在正实数集上的函数f(x)满足下列条件f(a)=1(a>1) 2.x属于R+时,有f(x^m)=mf(x)
问题描述:
定语在正实数集上的函数f(x)满足下列条件f(a)=1(a>1) 2.x属于R+时,有f(x^m)=mf(x)
1 求证 f(xy)=f(x)+f(y)
2 证明 f(x)在正数集上单调递增
3 若不等式f(x)+f(4-x)≤2 恒成立,求实数a的取值范围
答
1、由于f(x^m)=mf(x),所以f(x)=k*logb(x),因而 f(xy)=f(x)+f(y);
2、f(a)=1(a>1),可得出k>0且b>1或者k=0无论x取什么值都成立,转化成了二次函数的问题,即有4^2-4*a^2=2