椭圆X2/36+Y2/9=1上有两动点PQ,E(3,0),EP垂直于EQ,则向量EP点乘向量QP的最小值为多少?
问题描述:
椭圆X2/36+Y2/9=1上有两动点PQ,E(3,0),EP垂直于EQ,则向量EP点乘向量QP的最小值为多少?
求教
答
EP*QP=EP*(QE+EP)=EP²,则取得最小值时EP的长最小,设P(6cosθ,3sinθ)(参数方程)则EP²=(6cosθ-3)²+(3sinθ-0)²=27cos²θ-36cosθ+18,看作一个二次函数,则cosθ=36/(2*27)=2/3时取得最小...