已知函数F(X)=cos(三分之π+x)cos(三分之π-x)=根三sinxcosx+四分之一
问题描述:
已知函数F(X)=cos(三分之π+x)cos(三分之π-x)=根三sinxcosx+四分之一
已知函数F(X)=cos(三分之π+x)cos(三分之π-x)这里怎么算
答
因为cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
相加得cos(a+b)+cos(a-b)=2cosacosb
即cosacosb=[cos(a+b)+cos(a-b)]/2
所以f(x)=cos(π/3+x)cos(π/3-x)
=[cos(π/3+x+π/3-x)+cos(π/3+x-π/3+x)]/2
=[cos(2π/3)+cos2x]/2
=(cos2x-1/2)/2
=cos2x/2-1/4
如果不懂,请追问,祝学习愉快!