设f(x)=arctan√x,则x.>0,x趋向于0 ,limf(x+x.)-f(x.)/x=

问题描述:

设f(x)=arctan√x,则x.>0,x趋向于0 ,limf(x+x.)-f(x.)/x=
我打错了,limf(x+x。)-f(x。)是整体

f'(x)=[1/(1+x)]*(1/2)*1/√x=1/2(1+x)√x
limf(x+x.)-f(x.)/x=f'(x.)=1/2(1+x.)√x.好像算错了啊,呵呵limf(x+x。)-f(x。)/x 还是lim[f(x+x。)-f(x。)]/x????不好意思是我打错了,呵呵