如何证明e是无理数?
问题描述:
如何证明e是无理数?
答
利用微积分的知识可知e=1+1+1/2!+1/3!+……+1/n!+e^θ/(n+1)!(0<θ<1),两边同乘n!,得n!e=2n!+3×4×……×n+……+1+e^θ/(n+1) 即n!e-(2n!+3×4×……×n+……+1)=e^θ/(n+1) (后面的写不下了)
如何证明e是无理数?
利用微积分的知识可知e=1+1+1/2!+1/3!+……+1/n!+e^θ/(n+1)!(0<θ<1),两边同乘n!,得n!e=2n!+3×4×……×n+……+1+e^θ/(n+1) 即n!e-(2n!+3×4×……×n+……+1)=e^θ/(n+1) (后面的写不下了)