已知x2+x-1=0,求x(1−2/1−x)÷(x+1)−x(x2−1)x2−2x+1的值.

问题描述:

已知x2+x-1=0,求x(1−

2
1−x
)÷(x+1)−
x(x2−1)
x2−2x+1
的值.

x(1−

2
1−x
)÷(x+1)−
x(x2−1)
x2−2x+1

=x[
1−x−2
1−x
1
x+1
(x−1)(x+1)
(x−1)2
]

=x(
1
x−1
x+1
x−1
)

=
x2
x−1

∵x2+x-1=0,
∴-x2=x-1,
∴原式=
x2
x−1
=1.
故答案为1.