若曲线F(x)=ax的立方+lnx存在垂直与 Y轴的 切线,则实数a的取值范围?

问题描述:

若曲线F(x)=ax的立方+lnx存在垂直与 Y轴的 切线,则实数a的取值范围?
曲线 是 F(x)=a乘以x的立方加上lnx

垂直y轴则斜率为0
即导数等于0
f'(x)=3ax²+1/x=0
3ax²=-1/x
x³=-1/(3a)
所以x=-(3a)^(-1/3)
定义域x>0
所以
-(3a)^(-1/3)>0
(3a)^(-1/3)