求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1
问题描述:
求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1
答
左式=sin²A(1-sin²B)+sin²B+(1-sin²A)cos²B=sin²Acos²B+sin²B+cos²B-sin²Acos²B=sin²B+cos²B=1
右式=1
左式=右式
证毕