已知2sinαtanα=3,则sin^4-cos^4的值是

问题描述:

已知2sinαtanα=3,则sin^4-cos^4的值是

由2sinαtanα=3得:(sinα)^2=(3/2)cosα=1-(cosα)^2所以cosα=1/2;(cosα=-2舍去)又(sinα)^4-(cosα)^4=(sina)^2-(cosα)^2=(3/2)cosα-(cosα)^2所以(sinα)^4-(cosα)^4=(3/2)*(1/2)-(1/2)^2=1/2.即(sinα)^4...