已知:如图,在等腰三角形ABC中,AB=AC,P是底边BC上任意一点,过点P作PE⊥AB,PF⊥AC,垂足分别为E,F,过点B作BD⊥AC,垂足为D.求证:PE+PF=BD.

问题描述:

已知:如图,在等腰三角形ABC中,AB=AC,P是底边BC上任意一点,过点P作PE⊥AB,PF⊥AC,垂足分别为E,F,过点B作BD⊥AC,垂足为D.求证:PE+PF=BD.

证明:过P作PG⊥BD于G,
∵BD⊥AC,PF⊥AC,
∴PG∥DF,GD∥PF(垂直于同一条直线的两条直线互相平行),
∴四边形PGDF是平行四边形(两条对边互相平行的四边形是平行四边形);
又∵∠GDF=90°,
∴四边形PGDF是矩形(有一个角是直角的平行四边形是矩形),
∴PF=GD(矩形的对边相等)①
∵四边形PGDF是矩形
∴PG∥DF,即PG∥AC,
∴∠BPG=∠C(两条直线平行,同位角相等),
又∵AB=AC(已知)
∴∠ABC=∠C(等腰三角形的两底角相等),
∴∠BPG=∠ABC(等量代换)
∵在△BPE与△PBG中,

∠PEB=∠BGP
∠BPG=∠ABC
BP=PB

∴△BPE≌△PBG(AAS)
∴PE=BG②
①+②:PE+PF=BG+GD
即PE+PF=BD.