计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2/2=1到点(2,0)的弧

问题描述:

计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2/2=1到点(2,0)的弧

P=-(e^xcosy+y),∂P/∂y=e^xsiny-1
Q=e^xsiny+x,∂Q/∂x=e^xsiny+1
补线段L1:y=0,x从2到-2
则L+L1为封闭曲线,由格林公式
∮(e^xsiny+x)dy-(e^xcosy+y)dx
=∫∫ 2 dxdy
由于半个椭圆的面积为:(√2)π
=2√2π
下面计算L1上的积分:
∫ (e^xsiny+x)dy-(e^xcosy+y)dx
=-∫ [2→-2] e^x dx
=e^x |[-2→2]
=e²-e^(-2)
因此:原式=2√2π-e²+e^(-2)