伴随矩阵行列式的求法证明问题
问题描述:
伴随矩阵行列式的求法证明问题
│A*│=│A│^(n-1)
证明:A*=|A|A^(-1)
│A*│=|│A│*A^(-1)|
│A*│=│A│^(n)*|A^(-1)|
│A*│=│A│^(n)*|A|^(-1)
│A*│=│A│^(n-1)
其中证明后的第3步以及以后就不懂了.
答
原来的证明方法不好,可以这样证明:AA*=|A|E,两边同时取行列式,|A|*|A*|=|A|的n次方,所以|A*|=|A|的n-1次方