已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.
问题描述:
已知函数f(x)=loga(a-ax)且a>1,
(1)求函数的定义域和值域;
(2)讨论f(x)在其定义域上的单调性;
(3)证明函数图象关于y=x对称.
答
解析:(1)a-ax>0又∵a>1,∴x<1故其定义域为(-∞,1),值域为(-∞,+∞)(2)设1>x2>x1∵a>1,∴ax2>ax1,于是a-ax2<a-ax1则loga(a-ax2)<loga(a-ax1)即f(x2)<f(x1)∴f(x)在定义域(-∞,1...