已知关于x的一元二次方程x2-2(a-2)x-b2+16=0 (1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率. (2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
问题描述:
已知关于x的一元二次方程x2-2(a-2)x-b2+16=0
(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率.
(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
答
(1)由题意知本题是一个古典概型
用(a,b)表示一枚骰子投掷两次所得到的点数的事件
依题意知,基本事件(a,b)的总数有36个
二次方程x2-2(a-2)x-b2+16=0有两正根,
等价于
a−2>0 16−b2>0 △=4(a−2)2+4(b2−16)>0
即
a>2 −4<b<4 (a−2)2+b2>16
“方程有两个正根”的事件为A,则事件A包含的基本事件为(6,1)、
(6,2)、(6,3)、(5,3)共4个
∴所求的概率为P(A)=
=4 36
1 9
(2)由题意知本题是一个几何概型,
试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},
其面积为S(Ω)=16
满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16}
其面积为S(B)=
×π×42=4π1 4
∴所求的概率P(B)=
=4π 16
π 4