如果有理数a,b满足丨ab-2丨加丨1-b丨=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2011)(b+2011)的值
问题描述:
如果有理数a,b满足丨ab-2丨加丨1-b丨=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2011)(b+2011)的值
答
∵丨ab-2丨+丨1-b丨=0
∴ab-2=0,1-b=0
∴a=2,b=1
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2011)(b+2011)
=1/(1*2)+1/(2*3)+1/(3*4)+……+1/(2013*2012)
=1/1-1/2+1/2-1/3+1/3-1/4+……+1/2012-1/2013
=1-1/2013
=2012/2013