设{an}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{an}的通项公式; (Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

问题描述:

设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

(Ⅰ)∵设{an}是公比为正数的等比数列
∴设其公比为q,q>0
∵a3=a2+4,a1=2
∴2×q2=2×q+4 解得q=2或q=-1
∵q>0
∴q=2
∴{an}的通项公式为an=2×2n-1=2n
(Ⅱ)∵{bn}是首项为1,公差为2的等差数列
∴bn=1+(n-1)×2=2n-1
∴数列{an+bn}的前n项和Sn=

2(1−2n)
1−2
+
n(1+2n−1)
2
=2n+1-2+n2=2n+1+n2-2