已知[lg(c/a)]^2=4lg(a/b)lg(b/c),则a,b,c
问题描述:
已知[lg(c/a)]^2=4lg(a/b)lg(b/c),则a,b,c
A 成等差数列 B 成等比数列 C 既成等差数列又成等比数列 D 既不成等差又不成等比
答
将等式变形:原式变为(lg(b/c)+lg(a/b))^2=4;化简得:
(lg(b/c))^2+(lg(a/b))^2=2*lg(a/b)*lg(b/c);得:(lg(b/c)-lg(a/b))^2=0
得:lg(b/c)=lg(a/b)
所以b/c=a/b
故:a、b、c为等比数列怎么变为(lg(b/c)+lg(a/b))^2=4?将等式变形:lg(c/a)=lg(a/b)+lg(b/c)原式变为(lg(b/c)+lg(a/b))^2=4*lg(a/c)*lg(b/c);化简得:(lg(b/c))^2+(lg(a/b))^2=2*lg(a/b)*lg(b/c);得:(lg(b/c)-lg(a/b))^2=0得:lg(b/c)=lg(a/b)所以b/c=a/b故:a、b、c为等比数列 追问怎么变为(lg(b/c)+lg(a/b))^2=4?我还是看不懂啊,第一步怎么来的,还有你说(lg(b/c)+lg(a/b))^2=4 lg(b/c)+lg(a/b))^2=4*lg(a/c)*lg(b/c),也就是lg(a/c)*lg(b/c)=1?这怎么会等于1呢用对数运算公式:lga+lgb=lg(a*b)