已知X的平方减3X加1等于0,求X的四次方加X的四次方分之一的值.

问题描述:

已知X的平方减3X加1等于0,求X的四次方加X的四次方分之一的值.

∵ x²-3x+1=0
∴ x²+1=3x
∴x+1/x=3
x^4+(1/x^4)
=(x²+1/x²)²-2
=[(x+1/x)²-2]²-2
=(3²-2)²-2
=47


∵ x²-3x+1=0
∴ x²+1=3x
(x²+1)×1/x=3x×1/x
∴ x+(1/x)=3
∴ [x+(1/x)]²=3²
x²+2×x×1/x+(1/x²)=9
x²+2+(1/x²)=9
∴ x²+(1/x²)=7
∴ [x²+(1/x²)]²=7²
x^4+2×x²×(1/x²)+(1/x^4)=49 ( ^ 表示乘方)
x^4+2+(1/x^4)=49
∴ x^4+(1/x^4)=47

∵ x²-3x+1=0
∴ x²+1=3x
(x²+1)×1/x=3x×1/x
∴ x+(1/x)=3
∴ [x+(1/x)]²=3²
x²+2×x×1/x+(1/x²)=9
x²+2+(1/x²)=9
∴ x²+(1/x²)=7
∴ [x²+(1/x²)]²=7²
x^4+2×x²×(1/x²)+(1/x^4)=49 ( ^ 表示乘方)
x^4+2+(1/x^4)=49
∴ x^4+(1/x^4)=47