若x-y=m,y-z=n,求x^2+y^2+z^2-xy-yz-zx的值
问题描述:
若x-y=m,y-z=n,求x^2+y^2+z^2-xy-yz-zx的值
答
由于X-Y=M,Y-Z=N,该两式相加可得X-Z=M+N,带入上式可得:
X^2+Y^2+Z^2-XY-YZ-ZX
=[(x-y)^2+(y-z)^2+(x-z)^2]/2 公式
=1/2*[M^2+N^2+(M+N)^2]
=1/2*(2M^2+2N^2+2MN)
=M^2+N^2+MN