证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]

问题描述:

证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]

tan(3x/2)-tan(x/2) =sin(3x/2)/cos(3x/2)-sin(x/2)/cos(x/2)(通分) =[sin(3x/2)cos(x/2)-cos(3x/2)sin(x/2)]/[cos(3x/2)cos(x/2)] =sin(3x/2-x/2]/[(1/2)(cos2x+cosx)(积化和差) =2sinx/(cosx+cos2x) 故原式成立....