设A,B为n阶矩阵,n大于等于2 且AB=0 为什么在A为可逆矩阵即r(A)=n的时候 B=0

问题描述:

设A,B为n阶矩阵,n大于等于2 且AB=0 为什么在A为可逆矩阵即r(A)=n的时候 B=0

对B列分块,r(A)=n则A可逆所以Ax=0只有0解,所以B的每一列都是0向量