已知tan(A-B)=1/2,tanB=-1/7,且A,B属于(0,π),求2A-B

问题描述:

已知tan(A-B)=1/2,tanB=-1/7,且A,B属于(0,π),求2A-B

tan(A-B) = 1/2tan2(A-B) = (1/2+1/2)/(1-(1/2)^2) = 4/3 tan(2A-B)=tan(2(A-B)+B)=[tanB+tan2(A-B) ]/[1-tanBtan2(A-B)]=( -1/7+4/3) /( 1+(1/7)(4/3) )= (25/21)( 21/25)=12A-B= π/4