求:limx→1 [(x²-1)/(x-1)]e^(1/x-1)

问题描述:

求:limx→1 [(x²-1)/(x-1)]e^(1/x-1)

limx→1 [(x²-1)/(x-1)]e^(1/x-1)
=limx→1 [(x+1)]e^(1/x-1)
=2第二步到第三步的步骤麻烦写详细点,从=limx→1 [(x+1)]e^(1/x-1)到=2的把x=1直接代入好了额,e的分母是1/(x-1)哎晕菜,那你的表示还那么不准确?lim(x→1 )[(x²-1)/(x-1)]e^[1/(x-1)]=lim(x→1) [(x+1)]e^[1/(x-1)]令1/(x-1)=t,x=1+1/t,x→1,t→∞=lim(t→∞)(1+1/t+1)e^t=∞题目有毛病吧?